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C O N S P E C T U S

At the microscopic level, multidimensional
response functions, such as the nonlinear

optical susceptibility or the time-ordered response
function, are commonly used tools in nonlinear
optical spectroscopy for determining the nonlin-
ear polarization resulting from an arbitrary exci-
tation. In this Account, we point out that the
approach successfully developed for the nonlin-
ear polarization can also be used in the case of a
directly observable macroscopic quantity. This observable can be, for example, the electric field radiated in a nonlinear mix-
ing experiment, the rate of fluorescence resulting from one- or two-photon absorption, or the rate of a photochemical reac-
tion. For each of these physical processes, perturbation theory can be used to expand the measured quantity in a power
series of the exciting field, and an appropriate global response function can be introduced for each order of perturbation.
At order n, the multidimensional response function will depend on n variables (either time or frequency) and have the same
general properties as the nonlinear susceptibility resulting, for example, from time invariance or causality. The global response
function is introduced in this Account in close analogy with the nonlinear susceptibility or the time-ordered microscopic
response.

We discuss various applications of the global response function formalism. For example, it can be shown that in the weak
field limit, a stationary signal induced in a time-invariant system is independent of the spectral phase of the exciting field.
Although this result had been demonstrated previously, the global response function enables its derivation in a more gen-
eral way because no specific microscopic model is needed.

Multidimensional spectroscopy is obviously ideally suited to measure the global multidimensional response function. It
is shown that the second (or third)-order response can be exactly measured with 2D (or 3D) spectroscopy by taking into
account the exact shape of the exciting pulses. In the case of a 2D measurement of the third-order response, a particular
projection of the complete 3D response function is actually measured. This projection can be related to a mixed time and
frequency representation of the response function when the pulses are assumed to be infinitely short.

We thus show that the global response function is a useful tool for deriving general results and that it should help in
designing future experimental schemes for femtosecond spectroscopy.

1. Introduction

In nonlinear optics, the properties of matter dur-

ing light-matter interactions generally have to be

described as a multidimensional (tensorial) func-

tion. At the microscopic level, the nonlinear polar-

ization induced in a given material is thus entirely

determined by the nonlinear response function,

which depends on as many variables as the rele-

vant order of perturbation theory. In frequency

domain, this multidimensional function can be the

nonlinear optical susceptibility,1 while in time

domain, the time-ordered response function is

Vol. 42, No. 9 September 2009 1433-1441 ACCOUNTS OF CHEMICAL RESEARCH 1433Published on the Web 07/14/2009 www.pubs.acs.org/acr
10.1021/ar900001w CCC: $71.50 © 2009 American Chemical Society

D
ow

nl
oa

de
d 

by
 R

E
N

M
IN

 U
N

IV
 O

F 
C

H
IN

A
 o

n 
O

ct
ob

er
 2

, 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 J

ul
y 

14
, 2

00
9 

| d
oi

: 1
0.

10
21

/a
r9

00
00

1w

http://pubs.acs.org/action/showImage?doi=10.1021/ar900001w&iName=master.img-000.jpg&w=239&h=92


usually preferred.2 The purpose of this Account is to show that

this very fruitful approach is not limited to the microscopic

polarization but can also be applied to a directly observable

macroscopic quantity, such as the rate of a chemical reaction

or the electric field radiated by a given sample. Although it is

not as close to a microscopic description of the system, a glo-

bal view is more general and can be important for fundamen-

tal considerations. The mathematical description is first

introduced in a very general way, in analogy with the nonlin-

ear susceptibility or the time-ordered response function. In the

second half of the paper, we give examples of the global

response function formalism and its applicability to coherent

control and multidimensional spectroscopy.

2. Multidimensional Response Function

We consider a signal, S(t), resulting from system excitation by

an optical pulse of arbitrary shape. S(t) might be the induced

polarization, the field radiated by the sample, the rate of a

chemical reaction, or the rate of fluorescence emission. For the

sake of simplicity, tensorial aspects will not be considered here

and the electric field will be assumed to be a scalar quantity,

E(t). However, this could be easily added, following the stan-

dard formalism of the nonlinear susceptibility tensor.

We will write

where E(t) is the analytic representation, or complex field,

associated with the real field E(t). In frequency domain, we

have

where E(ω) is nonzero only for positive frequencies. The field

spectrum will be assumed to be centered on the carrier fre-

quency ω0.

2.1. Symmetrized Response Function. Assuming that

the system is excited with a pulse of moderate energy, we will

make use of perturbation theory and expand S(t) in a power

series

where S(n)(t) is a multilinear function of the electric field of

order n. Throughout this Account, the system will be assumed

to be time invariant in the general sense, meaning that a field

E(t - T) shifted in time by the constant value T will produce

a signal shifted by the same amount, that is, S(t - T). This

implies1 that the multilinear response S(n)(t) takes the form

where �(n)(tn, ..., t1) is by definition the appropriate response

function at order n. For the sake of simplicity, multiple inte-

grals, all extending from -∞ to +∞ in this Account, are rep-

resented by a single integral sign only. Equation 4 will be

written hereafter S(n)(t) ) �X[E...E] (although the integral is not

strictly a multidimensional convolution product). Note that

causality implies that �(n)(tn, ..., t1) vanishes as soon as one of

its arguments is negative. In frequency domain, we obtain

where �(n)(ωn, ..., ω1) is the multidimensional Fourier trans-

form of the real-valued �(n)(tn, ..., t1); hence �(n)(-ωn, ..., -ω1) )
�(n)(ωn, ..., ω1)*. In order to make the response function

uniquely defined, it is assumed that �(n) is invariant through

the n! possible permutations of its n arguments. In the case

where S(n)(t) is the nonlinear polarization P(n)(t), the response

function �(n)(ωn, ..., ω1) is equivalent to the nonlinear suscep-

tibility, �(n)(ωn, ..., ω1), as defined in standard nonlinear optics

textbooks.1 If S(n)(t) is the field E(n)(t) radiated by the sample, the

response function �(n) is the product of the susceptibility �(n)

and a term including phase-matching effects.3,4

2.2. Time-Ordered Response Function. Another wide-

spread choice of response function, as defined, for example,

by Mukamel,2 explicitly shows the time ordering of the fields.

In this case, the nonlinear signal reads

Such an integral will be hereafter written S(n)(t) ) R(n).[E...E].

The response function R(n)(tn, tn-1, ..., t1) vanishes as soon as

one of its arguments is negative. This ensures that the inter-

actions with the electric field are time ordered, with the field

on the right, E(t - tn -... - t1), corresponding to the first inter-

action and the field on the left, E(t - tn), corresponding to the

last of the n interactions. Unlike the symmetrized response �(n),

the time-ordered response R(n) is not invariant with respect to

the permutations of its arguments. As above, we can replace

in eq 6 the electric fields with their Fourier transforms:

E(t) ) 1
2

(E(t) + E*(t)) (1)

E(ω) ) 1
2

(E(ω) + E*(-ω)) (2)

S(t) ) S(1)(t) + S(2)(t) + S(3)(t) + ... (3)

S(n)(t) )∫ �(n)(tn, ... , t1)E(t - tn) ... E(t - t1) dt1 ... dtn (4)

S(n)(t) )∫ �(n)(ωn, ... , ω1)E(ωn) ... E(ω1 ) ×

exp(- i(ω1 + ... + ωn)t)
dω1

2π
...

dωn

2π
(5)

S(n)(t) )∫ R(n)(tn, tn-1, ... , t1)E(t - tn) ...

E(t - tn - ... - t1) dt1 ... dtn (6)

S(n)(t) )∫ R(n)(ω1 + ... + ωn, ω1 + ... + ωn-1, ... , ω1) ×

E(ωn) ... E(ω1) exp(- i(ω1 + ... + ωn)t)
dω1

2π
...

dωn

2π
(7)
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2.3. Relation between the Symmetrized and Time-
Ordered Response Functions. In order to relate the two

response functions introduced above, let us introduce the

function

We then obtain

This expression is very similar to eq 6, with the important dif-

ference that, unlike R(n), the function �(n) can take nonzero val-

ues when its arguments are negative. Another feature specific

to �(n), which will be quite handy in the following sections, is

that �(n).[En...E1] is invariant through any permutation of the n
fields. The time-ordered and symmetrized response function

can be simply related by reordering the n! possible time order-

ings contributing to eq 4, yielding

Conversely, if we compare eq 7 and eq 5, we remark that

the function R(n)(ω1 +... + ωn, ..., ω1) needs only to be symme-

trized in order to comply with the definition of the symme-

trized response function. It is therefore straightforward to

express one of the two response functions as a function of the

other one:

with the sum over the n! permutations of {ω1, ..., ωn}. Both

response functions contain exactly the same amount of infor-

mation on the system, actually all the information on the gen-

erated signal at the corresponding order of perturbation

theory. While R(n) contains the frequencies of the system’s

polarization as its arguments and hence is connected to a cer-

tain order of interacting frequencies, �(n) is more general and

depends on the frequencies ωj interacting with the system,

covering all possible combinations.

We now apply this general formalism to several aspects of

femtosecond spectroscopy.

3. Photodetection

We consider here photodetection in its broader meaning, that

is, any mechanism producing a signal sensitive to the optical

excitation. This could be photocurrent as in a conventional

photodetector but also other physical mechanisms such as flu-

orescence yield or a photochemical reaction (e.g., in the eye).

Furthermore, considering the femtosecond time scale of the

excitation process, it will be considered that the only relevant

quantity is the final result, after the pulse excitation. To apply

the formalism of the preceding section, we will assume that

S(t) is the instantaneous rate of a process, for example, the

electrical current or the fluorescence power, or the instanta-

neous rate of the photochemical reaction, whereas the rele-

vant signal is S ) ∫ S(t) dt ) S(ω ) 0). The detected signal S
may be, for example, the total charge produced by the pho-

todetector, the total energy released through fluorescence, or

the total yield of photochemical product. According to eq 7,

the signal at order n reads

with the convention ωn ) -ω1 -... - ωn-1. The final signal

thus results from the nonlinear mixing between the frequency

components of the field to eventually produce a DC contribu-

tion. If the pulse spectrum is centered at frequency ω0, each

interaction with the field will add (ω0. Unless the spectra are

extremely broad (i.e., comparable to one octave), only an even

number of interactions will produce a DC component. In the

following, we consider the cases of second- and fourth-order

processes.

3.1. One-Photon Detection. Let us consider here the case

of a signal quadratic in the electric field or linear in the pulse

energy, which can also be described as a one-photon process

(two field interactions). We then have

and according to eq 12, the final signal reads

The quantity g(1)(ω) ) R(2)(0,ω) can be clearly related to the

excitation spectrum of the process under consideration, which

can be measured either by a narrowband light source whose

wavelength is tuned or by a Fourier transform spectroscopy

approach employing two pulse replicas whose temporal dis-

tance is scanned.5 The final signal S(2) (e.g., the population

transferred in a one-photon excitation probed after all coher-

ent processes induced by the pump laser have faded) hence

�(n)(tn, ... , t1) ) �(n)(tn, tn + tn-1, ... , tn + ... + t1) (8)

S(n)(t) ) �(n) . [E ... E] (9)

R(n)(tn, tn-1, ... , t1) ) n ! �(n)(tn, tn-1, ... , t1)Θ(tn) ... Θ(t1)
(10)

�(n)(ωn, ... , ω1) )

1
n !∑{n!}

R(n)(ω1 + ... + ωn, ω1 + ... + ωn-1, ... , ω1) (11)

S(n) )∫ R(n)(0, ω1 + ... + ωn-1, ... , ω1)E(ωn) ...

E(ω1)
dω1

2π
...

dωn-1

2π
(12)

S(2)(t) )

∫ R(2)(ω1 + ω2, ω1)E(ω2)E(ω1) exp(- i(ω1 + ω2)t)
dω1

2π
dω2

2π
(13)

S(2) )∫ R(2)(0, ω1)E(-ω1)E(ω1)
dω1

2π
)∫ g(1)(ω)|E(ω)|2

dω
2π
(14)
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is insensitive to the phase of the electric field.6-8 This has also

been pointed out recently9 with regard to coherent control in

the low-excitation regime.10 In contrast, nonstationary sig-

nals can be coherently controlled even for signals quadratic in

the electric field,11 like vibrational wave packet evolution7,12

or coherent transients,8,13 but also here, the final (or time-

integrated) result will be independent of the phase of the elec-

tric field.

3.2. Two-Photon Detection. We now have four field

interactions, and eq 6 takes the form S(4)(t) ) R(4).[EEEE],

describing two-photon processes such as two-photon absorp-

tion or two-photon excited fluorescence but, for example, also

the first nonlinear term in absorption saturation.

According to eq 12, two-photon absorption will be gov-

erned by a 3D response function R(4)(0,ω1 + ω2 + ω3,ω1 +
ω2,ω1), which is particularly rich when there is an intermedi-

ate resonant level, giving rise to remarkable effects in coher-

ent control scenarios.14,15 A 2D projection of this 3D response

function has also been measured by use of multidimensional

spectroscopy associated with phase cycling.16

In the absence of an intermediate level, the pulse must

induce a coherence oscillating at (2ω0 after two field inter-

actions so that, when E ) (E + E *)/2 is expanded, only 2 out

of the 16 possible terms are relevant:

Indeed, without relying too much on a particular microscopic

model, we can state that after the first and third interaction,

the system must be in a short-lived coherence due to the lack

of an intermediate level. This implies that in the frequency

domain, R(4) varies slowly with respect to its second and last

arguments, which can be replaced with the pulse center fre-

quency. Equation 12 thus reduces to

where R stands for the real part. This integral involves two

convolution products of the form E(2)(ω) ) E(ω)XE(ω) where

E(2) is by definition the two-photon field. In time domain, the

two-photon field is simply the square of the incident field, that

is, E(2)(t) ) E(t)2. Introducing g(2)(ω) ) (1/8)R{R(4)(0,ω0,ω,ω0)}

allows eq 16 to be reduced to

Note the analogy to eq 14, with the difference that the sig-

nal is now entirely driven by the two-photon field, as previ-

ously reported.17-19 The final yield is simply the overlap

integral between the spectrum of the two-photon field and the

appropriate two-photon spectrum g(2)(ω), which, depending on

the actual experiment, can be the two-photon absorption spec-

trum or the excitation spectrum of the two-photon excited flu-

orescence, for example. As in the case of one-photon

absorption, the two-photon spectrum can be measured either

using a tunable narrow-band laser20 or by Fourier transform

spectroscopy.21 Phase shaping of the incident field results in

an amplitude shaping of the two-photon spectrum, allowing

coherent control of two-photon absorption.22

4. Multidimensional Spectroscopy

For nonlinear signals, a one-dimensional visualization con-

ceals important information, which can be accessed by a mul-

tidimensional representation. This is in analogy to nuclear

magnetic resonance spectroscopy (NMR),23 where multidimen-

sional methods have replaced conventional one-dimensional

ones, but brought forward to the optical spectral regime and

ultrafast time scales. Many outstanding experimental and the-

oretical achievements have been reported recently,4,24,25 as

also highlighted in this special issue. The most comprehen-

sive description is the nonlinear response function, and hence

the ultimate goal for experiments is its complete

determination.

4.1. Second-Order Response. The electric field radiated

at the second order of perturbation theory reads

According to eq 5, the region where �(2)(ω2,ω1) is addressed

corresponds to the areas where the 2D function E(ω2)E(ω1) is

nonzero. Using eq 2, we obtain four such regions, as shown

in Figure 1a. The term in E(ω2)E(ω1) corresponds to a case

where both ω1 and ω2 are positive, which results in a gener-

ated frequency ω1 + ω2 close to 2ω0 (sum-frequency mixing

or second-harmonic generation). In contrast, the term in

E(ω2)E*(-ω1) correponds to a situation where ω1 is negative,

so the generated frequency ω1 + ω2 ) |ω2| - |ω1| is close to

zero frequency (difference-frequency mixing or optical rectifi-

cation).

As in 2D NMR, the measurement of the second-order

response function �(2)(ω2,ω1) by 2D spectroscopy3,26 relies

on exciting the system with a sequence of two pulses, E(t)
+ E(t + τ) or E(ω)(1 + exp(-iωτ)) in frequency domain. The

field resulting from the interaction between these two

pulses is measured as a function of the time delay τ in both

amplitude and phase, using, for example, frequency-26 or

time-domain interferometry.3 The contribution to the radi-

S(4)(t) ) 1
16

R(4) . ([E*E*EE] + [EEE*E*]) (15)

S(4) ) 1
8

R{∫ R(4)(0, ω0, ω, ω0)E(ω - ω3)*E(ω3)* ×

E(ω - ω1)E(ω1)
dω1

2π
dω3

2π
dω
2π } (16)

S(4) )∫ g(2)(ω)|E(2)(ω)|2
dω
2π

(17)

E(2)(t) ) �(2) X [EE] (18)

Global Multidimensional Response Function in fs Spectroscopy Nuernberger et al.

1436 ACCOUNTS OF CHEMICAL RESEARCH 1433-1441 September 2009 Vol. 42, No. 9

D
ow

nl
oa

de
d 

by
 R

E
N

M
IN

 U
N

IV
 O

F 
C

H
IN

A
 o

n 
O

ct
ob

er
 2

, 2
00

9 
| h

ttp
://

pu
bs

.a
cs

.o
rg

 
 P

ub
lic

at
io

n 
D

at
e 

(W
eb

):
 J

ul
y 

14
, 2

00
9 

| d
oi

: 1
0.

10
21

/a
r9

00
00

1w



ated field resulting from the mixing between the two pulses

reads

An inverse Fourier transform of this quantity with respect to

τ directly yields

A complete knowledge, in both amplitude and phase, of

the exciting field allows the division of E(ω,ωτ) by the com-

plex quantity E(ω - ωτ)E(ωτ), yielding the response function

�(2)(ω - ωτ,ωτ). Note that this procedure allows the retrieval of

the response function in the areas spanned by the exciting

field (shown in Figure 1) and that it is exact even in the case

of pulses of finite duration. This approach has been demon-

strated in the cases of sum-frequency mixing26 and difference-

frequency mixing3 in situations where the second-order

response function was deliberately dominated by phase-

matching effects. It would be of great interest to broaden the

frequency range covered by such a method in order to

address large areas of the second-order susceptibility. Figure

1 illustrates both the symmetrized, as calculated from the

sum-over-state expression of �(2)(ω2,ω1),1 and the time-ordered

response function that could be obtained in the case of a

three-level system.

4.2. Third-Order Response. At the third order of pertur-

bation theory, we have

Similar to the second-order response, the region where

�(3)(ω3,ω2,ω1) is addressed corresponds to the areas where the

3D function E(ω3)E(ω2)E(ω1) is nonzero. Since each field is asso-

ciated with a frequency (ω0, depending on which complex

component contributes to the interaction, the addressed area

of the response function corresponds to eight spheres whose

diameters correspond to the pulse spectral width and which

are centered at the eight vertices of a cube. However, in its

conventional implementation,27 multidimensional spectros-

copy of the third-order response is better understood by use

of the time-ordered response function R(3) rather than the sym-

metrized response �, that is, E(3)(t) ) R(3).[EEE]. Taking the Fou-

rier transform of eq 7, we can write the field radiated at

frequency ω

where we have made the change of variable ωτ ) ω1, ωT )
ω1 + ω2, and ω ) ω1 + ω2 + ω3. The values of ω, ωT, and ωτ

that can be addressed can then be determined by keeping

track of the possible excitation paths, as shown in Figure 2a.

As above, there are eight regions that can be addressed by the

exciting field. If the spectral width is smaller than one octave,

these areas do not overlap and it is possible to define spe-

cific parts of the response function corresponding to a

response Rε3,ε2,ε1 where εk ) (1 corresponds to the sign of the

complex component contributing to the kth interaction. Fig-

ure 2b shows three slices of the 3D response function

R(ω, ωT, ωτ) for three different values of ωT.

FIGURE 1. (a) Areas of the response function �(2)(ω2,ω1) addressed by a short pulse of center frequency ω0. Regions where ω1 and ω2 have
the same sign correspond to sum-frequency mixing (SFM) and those with different signs to difference-frequency mixing (DFM). (b) Example of
a second-order symmetrized response function �(2)(ω2,ω1) for a three-level system with the indicated dipole matrix, exhibiting both single
resonances (lines associated with ω1, ω2, or ω1 + ω2 resonant with a transition) and double resonances (peaks at intersections of single
resonance lines). (c) The corresponding time-ordered response function R(2)(ω,ωτ). While �(2)(ω2,ω1) generally shows all possible combinations
for two frequencies, ω1 and ω2, each interacting with the system once, R(2)(ω,ωτ) reveals the polarization’s frequency ωτ after the first and ω
after the second interaction, respectively. Absolute values are plotted for a Bloch equation model with T1 ) 2.5T2.

E(ω, τ) ) 2∫ �(2)(ω - ω1, ω1)E(ω - ω1)E(ω1) ×

exp(- iω1τ)
dω1

2π
(19)

E(ω, ωτ) ) 2�(2)(ω - ωτ, ωτ)E(ω - ωτ)E(ωτ) (20)

E(3)(t) ) �(3) X [EEE] (21)

E(3)(ω) )∫ R(3)(ω, ωT, ωτ)E(ω - ωT)E(ωT - ωτ)E(ωτ)
dωT

2π
dωτ

2π
(22)
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Four terms are complex conjugates of the other four, so in

the following we will consider only terms contributing to E(3)(t),

which means that the final frequency ω must be positive. One

of the four terms, R+++, corresponds to third-harmonic gener-

ation, which will not be discussed here. The three remaining

terms are the two-quantum term R-++ [ωT ) 2ω0, Figure

2b(iii)], and the one-quantum terms R++- and R+-+ exhibit-

ing ωT ) 0 [Figure 2b(ii)] and corresponding, respectively, to

rephasing (ω and ωτ have opposite sign) and non-rephasing

(same sign) contributions.

Let us consider the boxcar geometry with E1, E2 and E3, that

is, a geometrical arrangement of laser beams selecting the sig-

nal detected in direction k4 ) -k1 + k2 + k3. The field radi-

ated in this direction reads

Note that we use here the function �(3) rather than R(3) so that

the different ordering of the three fields contribute equally to

the response; hence the factor of 6 ) 3!. Therefore, it is not

necessary to explicitly write down the six possible permuta-

tions of the interactions as would be otherwise required. We

call τ the time delay between pulses 1 and 2 and T the time

delay between pulses 2 and 3, which are assumed to arrive

in this order for positive values of the time delays. In fre-

quency domain, we thus have E3(ω) ) E(ω), E2(ω) )

E(ω) exp(-iωT), and E1(ω) ) E(ω) exp(-iω(τ + T)). We then

obtain

If we assume this quantity to be measured as a function of T
and τ, scanned for both negative and positive values, a 2D

inverse Fourier transform with respect to T and τ yields

Such an experiment will yield all the information on the third-

order response through the entire 3D response function �(3)(ω,

ωT, ωτ), that is, full third-order 3D spectroscopy. Such an

approach necessitates a Fourier transform with respect to T,

like very recently performed28 but only of |E(ω, T, ωτ)|. The

advantage of full third-order 3D spectroscopy is that, as for the

second-order response, the spectral amplitude and phase of

the exciting pulse can be taken into account so that the

method is exact even for pulses of finite duration (and even

with chirp if the pulse is fully characterized). Finally, it should

be noted that we get �(3) rather than R(3), which can however

be obtained from �(3) as shown in the first section. As an

example, Figure 3 juxtaposes and discusses R(3) and �(3) of a

three-level system for two different coupling schemes.

In practice, multidimensional spectroscopy is usually imple-

mented in 2D rather than 3D, that is, measuring 2D projec-

tions of the full 3D response function. As a consequence, we

will have to make approximations, namely, that the pulses are

sufficiently short so that there is no need to care about what

happens when the pulses overlap. In the following, we will

consider only the case where the waiting time T is positive

(i.e., greater than the pulse duration). Let us first consider the

case where the time delay τ is positive. With the assumption

that the pulses are short enough, the time ordering of the

three interactions is clearly E1, then E2, and finally E3. The

only contribution to the detected field is therefore

Only R++- will contribute to the signal in the boxcar geom-

etry, so this pulse ordering selects the rephasing term of the

response function.27 We therefore obtain an expression

very similar to eq 24, except that �(ω, ωT, ωτ) can be

replaced with R++-(ω, ωT, ωτ)/6. Using the approximation of

infinitely short pulses, we can also replace in the integral

the frequency-dependent fields by a constant value E0, so

eq 24 becomes a 2D Fourier transform of R++-(ω, ωT, ωτ).

FIGURE 2. (a) Possible paths of excitation of the response function
R(ω, ωT, ωτ). Each interaction either adds (E) or subtracts (E*) a
frequency close to the center frequency ω0. (b) Representation of
three 2D slices of addressed areas of the response function
R(ω, ωT, ωτ) for ωT ) -2ω0 (i), ωT ) 0 (ii), and ωT ) 2ω0 (iii).

E(3)(t) ) 6
4

�(3) . [E3E2E1
∗] (23)

E(3)(ω, T, τ) ) 6
4∫ �(3)(ω, ωT, ωτ)E(ω - ωT)E(ωT - ωτ) ×

E*(-ωτ) e-iωTT-iωττ
dωT

2π
dωτ

2π
(24)

E(3)(ω, ωT, ωτ) )
3
2

�(3)(ω, ωT, ωτ)E(ω - ωT)E(ωT - ωτ) ×

E*(-ωτ) (25)

E(3)(t, T, τ) ) 1
4

R(3) . [E3E2E1
∗] (26)
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By performing an inverse Fourier transform with respect to

ωτ, we thus obtain

which is the usual rephasing 2D spectrum R++-(ω, T, ωτ).

Similarly, the data recorded by permuting pulses 1 and 2

yields the non-rephasing 2D spectrum

4.3. Multidimensional Spectroscopy in Pump-Probe
Geometry. Let us now consider the use of the pump-probe

geometry for multidimensional spectroscopy. This can be

either achieved with a spectrally narrow pump (performing the

first two interactions) whose center frequency is tuned across

the spectrum,29 or again by Fourier transform multidimen-

sional spectroscopy in which the pump field comprises two

pulses.27

The experiment consists of recording the pump-induced

change in transmitted probe intensity, ∆I(ω) )
2R{E ′*(ω)E(3)(ω)}, which results from the interference between

the transmitted probe (in the absence of the pump), E ′(ω), and

the radiated third-order field

which involves two interactions with the pump field EP, and

one with the probe ET. In the case of an optically thin sam-

ple, it can be assumed that the transmitted probe E ′(ω) is

identical to the incident probe field. For an infinitely short

probe pulse, the measured signal is then simply proportional

FIGURE 3. Slices through the absolute value of 3D response functions for the three-level system of Figure 1 for two different dipole
matrices µ. (a) States |r〉 and |e〉 share a common ground state |g〉 but are not directly coupled. �(3)(ω3, ω2, ω1) reveals all combinations of the
three interacting frequencies, while R(3)(ω, ωT, ωτ), for example, directly reveals possible quantum beats (at ωT ) (ωer) after the second
interaction. (b) The states form a ladder where |g〉 and |e〉 are not directly coupled. Thus, �(3) has no contribution at ωn ) (ωeg. By contrast, in
R(3) the two-quantum states show up at ωT ) (ωeg; For clarity, contributions larger than 4% of the maximum are set to black.

�w Movies in AVI format of the left and right parts of panel a and of the left and right parts of panel b are available.

ER
(3)(ω, T, ωτ) )

E0
3

4
R++-(ω, T, ωτ) (27)

ENR
(3) (ω, T, ωτ) )

E0
3

4
R+-+(ω, T, ωτ) (28) E(3)(t) ) 6

4
�(3) . [ETEPEP

∗] (29)
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to the real part of the third-order field. Alternatively, the trans-

mitted probe can be fully characterized so that the experimen-

tal data can be numerically processed in order to produce the

real part of the third-order field. In either case, we will assume

in the following that we have access to the quantity

Note that for a positive waiting time, the probe field can be

assumed to be the last one interacting with the system, so that

the use of the time-ordered response function yields

We will briefly focus on the Fourier transform implemen-

tation of multidimensional spectroscopy in the pump-probe

geometry,27 as has been recently demonstrated

experimentally.30-33 The method comprises the same scan-

ning protocol as the boxcars implementation, except that

pulses E1 and E2 are collinear and constitute the pump pulse.

Equation 30 will then both comprise pure pump-probe con-

tributions (varying very slowly with respect to τ, as the first two

interactions come from the same pulse of the pump field) that

can be removed, for example, by Fourier filtering, and the

desired echo signals, which will be considered in the follow-

ing. Both rephasing and non-rephasing terms will contribute

to E(3)(ω, T, τ) simultaneously. Scanning only positive values

of τ, we obtain

where the two terms can be easily separated since they cor-

respond to different signs of the frequency ωτ. However, the

measured quantity is actually S(ω, T, τ), as given by eq 30. The

Fourier transform with respect to τ of the real part of the third-

order field results in a symmetrization in ωτ space, produc-

ing an overlap between the rephasing and non-rephasing term

both at positive and at negative values of ωτ, and yielding

only the absorptive 2D spectrum

Nonetheless, it is still possible to retrieve independently the

rephasing and non-rephasing terms by making use of causal-

ity (i.e., doing an inverse Fourier transform back to t space and

only keeping contributions for t > 0) for extracting the com-

plex field from its real part, as most recently demonstrated

experimentally.33 This implementation of 2D spectroscopy

thus provides information which is as useful as that provided

by the boxcar geometry, with the advantage that no additional

phasing measurement27,34,35 is needed to determine the

absolute phase of the spectra.

5. Higher-Order Response

We also want to briefly mention processes of even higher

order and their implications in nonlinear spectroscopy. More

interactions of the electric field and the material are described

by higher-order response functions. The increased number of

degrees of freedom may lead to a broader versatility in coher-

ent control, for example, in three-photon absorption19

described by a response function �(6)(ω6, ..., ω1), where the sys-

tem interacts six times with the electric field whose spectral

phase, amplitude, and polarization can be manipulated

independently.

In multidimensional spectroscopy, the higher nonlinearity

allows the revelation of information not accessible in a simi-

lar way otherwise, for instance, in fifth order described by

�(5)(ω5, ..., ω1). Two-dimensional fifth-order Raman spectros-

copy, with two nonresonant pump pulse pairs separated in

time and followed by a probe pulse, is a very sensitive

method for measuring the many-body potential of liquids.36

In a different approach called fifth-order 3D spectroscopy37,38

(not to be confused with third-order 3D spectroscopy men-

tioned earlier) the five pulses are all resonant and are moved

independently in time, augmenting the benefits of third-

order 2D spectroscopy, for example, by covering higher-ly-

ing levels, rephasing two-quantum coherences, and being sen-

sitive to non-Gaussian frequency fluctuations.

Finally, we stress that in the case of strong-field interac-

tions perturbation theory breaks down and effects beyond the

approach of a multidimensional response become dominant.

6. Conclusion

We have discussed a global multidimensional response func-

tion analogous to the microscopic nonlinear susceptibility. Its

advantage of being a very general quantity not limited to cer-

tain properties of the interacting electric field or the system

under study has been discussed in the context of coherent

control and multidimensional spectroscopy. Thus, a global

response function is helpful for the elucidation of nonlinear

optical processes and possibly also for the conception of novel

techniques to measure them.

We wish to thank Adeline Bonvalet for fruitful discussions. This
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S(ω) ) E(3)(ω) + E(3)(ω) * (30)

E(3)(t) ) 1
4

(R++-
(3) . [ETEPEP

∗] + R+-+
(3) . [ETEP

∗EP]) (31)

E(3)(ω, T, ωτ) )
E0

3

4
(R++-(ω, T, ωτ) + R+-+(ω, T, ωτ))

(32)

Rabs
(3) (ω, T, ωτ) ) R{R++-

(3) (ω, T, -ωτ) + R+-+
(3) (ω, T, ωτ)}

(33)
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